Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.147
Filtrar
1.
Biophys J ; 123(8): 947-956, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38449311

RESUMO

The ability to perceive temperature is crucial for most animals. It enables them to maintain their body temperature and swiftly react to noxiously cold or hot objects. Caenorhabditis elegans is a powerful genetic model for the study of thermosensation as its simple nervous system is well characterized and its transparent body is suited for in vivo functional imaging of neurons. The behavior triggered by experience-dependent thermosensation has been well studied in C. elegans under temperature-gradient environments. However, how C. elegans senses temperature via its nervous system is not well understood due to the limitations of currently available technologies. One major bottleneck is the difficulty in creating fast temperature changes, especially cold stimuli. Here, we developed a microfluidic-based platform that allowed the in vivo functional imaging of C. elegans responding to well-controlled temporally varying temperature stimulation by rapidly switching fluid streams at different temperatures. We used computational models to enable rational design and optimization of experimental conditions. We validated the design and utility of our system with studies of the functional role of thermosensory neurons. We showed that the responses of PVD polymodal nociceptor neurons observed in previous studies can be recapitulated. Further, we highlighted how this platform may be used to dissect neuronal circuits with an example of activity recording in PVC interneurons. Both of these neuron types show sensitization phenotypes. We envision that both the engineered system and the findings in this work will spur further studies of molecular and cellular mechanisms underlying cold-sensing through the nervous system.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Temperatura , Caenorhabditis elegans/genética , Microfluídica , Sensação Térmica/fisiologia , Temperatura Baixa , Proteínas de Caenorhabditis elegans/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-38541322

RESUMO

The consequences of climate change are already visible, and yet, its effect on psychosocial factors, including the expression of empathy, affect, and social disconnection, is widely unknown. Outdoor conditions are expected to influence indoor conditions. Therefore, the aim of this study was to investigate the effect of indoor air temperature during work hours on empathy, positive and negative affect, and social disconnection. Participants (N = 31) were exposed, in a cross-over design, to two thermal conditions in a simulated office environment. Questions on empathy and social disconnection were administered before and after the exposure to each condition, while affect was measured throughout the day. Subjective thermal sensation and objective measures of mean skin temperature were considered. The results indicated a significant difference in empathy (F(1, 24) = 5.37, p = 0.03, with an η2 = 0.126) between conditions. Participants reported increases in empathy after exposure to the warm condition compared to the cool condition, in which reductions in empathy were reported. Although the same pattern was observed for positive affect, the difference was smaller and the results were not significant. Thermal sensation had a significant effect on changes in empathy too (F(1, 54) = 7.015, p = 0.01, with an R2 = 0.115), while mean skin temperature had no effect on empathy (F(1, 6) = 0.53, p = 0.89, with an R2 = 0.81). No effects were observed for positive and negative affect and social disconnection. Longitudinal studies are needed to support these findings.


Assuntos
Poluição do Ar em Ambientes Fechados , Empatia , Humanos , Temperatura , Temperatura Baixa , Sensação Térmica , Temperatura Cutânea
3.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Ingestão de Alimentos , Células Ependimogliais , Temperatura Alta , Hipotálamo , Neurônios , Núcleos Parabraquiais , Fator A de Crescimento do Endotélio Vascular , Animais , Hipotálamo/metabolismo , Hipotálamo/citologia , Camundongos , Masculino , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Dopamina/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Proteína Relacionada com Agouti/metabolismo , Feminino , Sensação Térmica/fisiologia , Vias Neurais/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar/fisiologia
4.
Int J Biometeorol ; 68(4): 777-793, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38427096

RESUMO

To adapt to Earth's rapidly changing climate, detailed modelling of thermal stress is needed. Dangerous stress levels are becoming more frequent, longer, and more severe. While traditional measurements of thermal stress have focused on air temperature and humidity, modern measures including radiation and wind speed are becoming widespread. However, projecting such indices has presented a challenging problem, due to the need for appropriate bias correction of multiple variables that vary on hourly timescales. In this paper, we aim to provide a detailed understanding of changing thermal stress patterns incorporating modern measurements, bias correction techniques, and hourly projections to assess the impact of climate change on thermal stress at human scales. To achieve these aims, we conduct a case study of projected thermal stress in central Hobart, Australia for 2040-2059, compared to the historical period 1990-2005. We present the first hourly metre-scale projections of thermal stress driven by multivariate bias-corrected data. We bias correct four variables from six dynamically downscaled General Circulation Models. These outputs drive the Solar and LongWave Environmental Irradiance Geometry model at metre scale, calculating mean radiant temperature and the Universal Thermal Climate Index. We demonstrate that multivariate bias correction can correct means on multiple time scales while accurately preserving mean seasonal trends. Changes in mean air temperature and UTCI by hour of the day and month of the year reveal diurnal and annual patterns in both temporal trends and model agreement. We present plots of future median stress values in the context of historical percentiles, revealing trends and patterns not evident in mean data. Our modelling illustrates a future Hobart that experiences higher and more consistent numbers of hours of heat stress arriving earlier in the year and extending further throughout the day.


Assuntos
Transtornos de Estresse por Calor , Modelos Teóricos , Humanos , Temperatura , Umidade , Vento , Sensação Térmica
5.
PLoS One ; 19(2): e0299036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38412198

RESUMO

Thermal comfort of humans depends on the surrounding environment and affects their productivity. Several environmental factors, such as air temperature, relative humidity, wind or airflow, and radiation, have considerable influence on the thermal comfort or pleasantness; hence, these are generally controlled by electrical devices. Lately, the development of objective measurement methods for thermal comfort or pleasantness using physiological signals is receiving attention to realize a personalized comfortable environment through the automatic control of electrical devices. In this study, we focused on electroencephalography (EEG) and investigated whether EEG signals contain information related to the pleasantness of ambient airflow reproducing natural wind fluctuations using machine learning methods. In a hot and humid artificial climate chamber, we measured EEG signals while the participants were exposed to airflow at four different velocities. Based on the reported pleasantness levels, we performed within-participant classification from the source activity of the EEG and obtained a classification accuracy higher than the chance level using both linear and nonlinear support vector machine classifiers as well as an artificial neural network. The results of this study showed that EEG is useful in identifying people's transient pleasantness when exposed to wind.


Assuntos
Sensação Térmica , Vento , Humanos , Clima , Temperatura , Eletroencefalografia
6.
Appl Ergon ; 117: 104241, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354553

RESUMO

This study assessed the effect of season on cognitive function and psycho-physiological responses during a 14-day swing in mine-service workers. Cognitive function, thermal sensation and comfort, rating of perceived exertion, fatigue, hydration, core temperature and heart rate were assessed throughout a shift, on three separate days over a swing. Working memory and processing efficiency did not differ between seasons (p > 0.05), however counting and recall latencies improved throughout the swing (p < 0.05). Participants reported greater fatigue post-shift compared to pre-shift (p < 0.05). Thermal sensation, thermal comfort, and hydration were significantly elevated in summer compared to winter (p < 0.05). Specifically, workers were significantly/minimally dehydrated in summer/winter (urinary specific gravity = 1.025 ± 0.007/1.018 ± 0.007). Although cognitive function and thermal strain were not impaired in summer compared to winter, it is essential to reinforce worker's knowledge regarding hydration requirements. Additional education and/or incorporating scheduled rest breaks for hydration should be considered to ensure the health and safety of mine workers.


Assuntos
Desidratação , Fadiga , Humanos , Estações do Ano , Sensação Térmica , Cognição
7.
J Neurosci ; 44(11)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38316563

RESUMO

Cooling sensations arise inside the mouth during ingestive and homeostasis behaviors. Oral presence of cooling temperature engages the cold and menthol receptor TRPM8 (transient receptor potential melastatin 8) on trigeminal afferents. Yet, how TRPM8 influences brain and behavioral responses to oral temperature is undefined. Here we used in vivo neurophysiology to record action potentials stimulated by cooling and warming of oral tissues from trigeminal nucleus caudalis neurons in female and male wild-type and TRPM8 gene deficient mice. Using these lines, we also measured orobehavioral licking responses to cool and warm water in a novel, temperature-controlled fluid choice test. Capture of antidromic electrophysiological responses to thalamic stimulation identified that wild-type central trigeminal neurons showed diverse responses to oral cooling. Some neurons displayed relatively strong excitation to cold <10°C (COLD neurons) while others responded to only a segment of mild cool temperatures below 30°C (COOL neurons). Notably, TRPM8 deficient mice retained COLD-type but lacked COOL cells. This deficit impaired population responses to mild cooling temperatures below 30°C and allowed warmth-like (≥35°C) neural activity to pervade the normally innocuous cool temperature range, predicting TRPM8 deficient mice would show anomalously similar orobehavioral responses to warm and cool temperatures. Accordingly, TRPM8 deficient mice avoided both warm (35°C) and mild cool (≤30°C) water and sought colder temperatures in fluid licking tests, whereas control mice avoided warm but were indifferent to mild cool and colder water. Results imply TRPM8 input separates cool from warm temperature sensing and suggest other thermoreceptors also participate in oral cooling sensation.


Assuntos
Canais de Cátion TRPM , Camundongos , Masculino , Animais , Feminino , Canais de Cátion TRPM/genética , Temperatura Baixa , Neurônios , Temperatura , Sensação Térmica/fisiologia , Água
8.
Plant Sci ; 342: 112025, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38354752

RESUMO

Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.


Assuntos
Plantas , Sensação Térmica , Temperatura , Plantas/genética , Sensação Térmica/fisiologia , Adaptação Fisiológica , Aclimatação
9.
Sci Total Environ ; 918: 170683, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325465

RESUMO

The real indoor environment involves the comprehensive interaction of multiple factors, and human subjective responses to different factors are influenced by various aspects such as physics, physiology, and psychology. The relative significance of various factors influencing different types of human subjective thermal perception, as well as the extent of their interactions, remains somewhat unclear. This investigation, leveraging the "Chinese Thermal Comfort Dataset," analyzed the integrated impact of basic thermal perception factors-temperature, humidity, air speed, as well as clothing insulation and metabolic rate-on subjective thermal perception. The findings underscored the definitive role of air temperature as the primary determinant of thermal sensation, with the impact of other factors generally remaining below 15 % of temperature. Nonetheless, the sensitivity of thermal sensation to temperature is significantly affected by other factors, demonstrating a significant interaction between temperature and different factors in influencing temperature sensation. Additionally, it was observed that significant differences (p < 0.001) in thermal comfort levels existed even at the same thermal sensation. For instance, in the state of thermal neutrality, occupants with relatively higher clothing insulation reported higher thermal comfort level (d = 0.40, p < 0.001) during the cooling season but lower thermal comfort level (d = 0.54, P < 0.001) during the heating season. Consequently, it can be deduced that when comprehensively considering the impact of multiple factors, evaluating the environment solely based on thermal sensation or thermal neutrality may prove insufficient.


Assuntos
Temperatura Baixa , Sensação Térmica , Humanos , Umidade , Temperatura , Percepção
10.
Int J Biometeorol ; 68(4): 675-690, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38180571

RESUMO

This study aims to evaluate agreement among subjective thermal comfort, thermal sensation, thermal perception, and thermal tolerance indices, according to pedestrians in downtown Santa Maria, southern Brazil, which has a humid subtropical climate (Cfa). Between August 2015 and July 2016 (three periods), 1728 questionnaires were applied. Evaluation of the dependence of statistical variables was based on gender and age, at three periods of time: August 2015 (864 respondents), January 2016 (432 respondents), and July 2016 (432 respondents). Statistical evaluation was based on Pearson's chi-square test using RStudio software, and a significance level (α) of 5% for thermal comfort, thermal sensation, thermal preference, and thermal tolerance was used. Results indicated that age and gender affect the relationship between the variables. Thermal comfort and thermal tolerance presented the best correlation and coherence, regardless of age or gender. This study contributes to knowledge on the local microclimate and can contribute to urban planning to implement strategies that improve pedestrians' thermal comfort.


Assuntos
Pedestres , Humanos , Clima , Microclima , Sensação Térmica , Percepção , Cidades
11.
Int J Biometeorol ; 68(4): 807-810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246896

RESUMO

Wind speed is an important variable in the assessment of thermal comfort. Different types of meteorological devices provide different accuracy of air velocity (va) measurements, which under limited air flow conditions, may result in a discrepancy in actual thermal stress level. Simultaneous measurements on warm summer days, performed with a cup anemometer and hot-wire probe, prove that too high starting threshold of the first of these sensors can lead to a discrepancy of actual wind speed, and as a consequence can distort MRT (estimated with globe thermometers) and PET values on average up to 10 °C and 1 °C, respectively.


Assuntos
Sensação Térmica , Vento , Luz Solar , Estações do Ano , Tomografia por Emissão de Pósitrons , Temperatura
12.
Int J Biometeorol ; 68(3): 463-477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189989

RESUMO

Here, we evaluated the influence of outdoor environmental conditions (synoptic weather conditions) on human thermal discomfort in the five macro-regions of Pelotas city, located in the southernmost region of Brazil. To do this, meteorological sensors (HOBO MX2301A) were installed outside the residences to measure the air temperature, dew point temperature, and relative humidity between 18 January and 20 August 2019. Two well-established simplified biometeorological indices were examined seasonally: (i) humidex for the summer months and (ii) effective temperature as a function of wind for the autumn and winter months. Our findings showed seasonal differences related to human thermal discomfort and outdoor environmental conditions. The thermal discomfort was highest in the afternoons during the summer months and at night during the winter months. The seasonal variation in human thermal discomfort was highly associated with the meteorological conditions. In summer, the presence of the South Atlantic Subtropical Anticyclone (SASA) contributed to heat stress. The SASA combined with the continent's low humidity contributed to the perceived sensation of thermal discomfort. In the winter, thermal discomfort was associated with the decrease in air humidity caused by high atmospheric pressure systems, which led to a decrease in both air temperature and air moisture content. Our findings suggest that a better understanding of the complex interplay between outdoor environmental factors and human thermal comfort is needed in order to mitigate the negative effects of thermal discomfort.


Assuntos
Sensação Térmica , Tempo (Meteorologia) , Humanos , Brasil/epidemiologia , Umidade , Temperatura , Estações do Ano
13.
Int J Biometeorol ; 68(2): 289-304, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38047941

RESUMO

Passenger thermal comfort in high-speed train (HST) carriages presents unique challenges due to factors such as extensive operational areas, longer travel durations, larger spaces, and higher passenger capacities. This study aims to propose a new prediction model to better understand and address thermal comfort in HST carriages. The proposed prediction model incorporates skin wettedness, vertical skin temperature difference (ΔTd), and skin temperature as parameters to predict the thermal sensation vote (TSV) of HST passengers. The experiments were conducted with 65 subjects, evenly distributed throughout the HST compartment. Thermal environmental conditions and physiological signals were measured to capture the subjects' thermal responses. The study also investigated regional and overall thermal sensations experienced by the subjects. Results revealed significant regional differences in skin temperature between upper and lower body parts. By analyzing data from 45 subjects, We analyzed the effect of 25 variables on TSV by partial least squares (PLS), from which we singled out 3 key factors. And the optimal multiple regression equation was derived to predict the TSV of HST occupants. Validation with an additional 20 subjects demonstrated a strong linear correlation (0.965) between the actual TSV and the predicted values, confirming the feasibility and accuracy of the developed prediction model. By integrating skin wettedness and ΔTd with skin temperature, the model provides a comprehensive approach to predicting thermal comfort in HST environments. This research contributes to advancing thermal comfort analysis in HST and offers valuable insights for optimizing HST system design and operation to meet passengers' comfort requirements.


Assuntos
Ar Condicionado , Temperatura Cutânea , Humanos , Ar Condicionado/métodos , Sensação Térmica/fisiologia , Temperatura
14.
Int J Biometeorol ; 68(1): 79-87, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37966503

RESUMO

The large number of thermal indices introduced in the literature poses a challenge to identify the appropriate one for a given application. The aim of this study was to examine the effectiveness of widely used indices in quantifying the thermal environment for operational weather applications within a Mediterranean climate. Eight indices (six simple and two thermo-physiological) were considered, i.e., apparent temperature, heat index, humidex, net effective temperature (NET), physiologically equivalent temperature (PET), universal thermal climate index (UTCI), wet-bulb globe temperature, and wind chill temperature. They were estimated using hourly meteorological data between 2010 and 2021, recorded in 15 stations from the Automatic Weather Station Network of the National Observatory of Athens in the Athens metropolitan area, Greece. The statistical analysis focused on examining indices' sensitivity to variations of the thermal environment. NET, PET, and UTCI were evaluated as suitable for operational use, assessing both cool and warm environments, and extending their estimations to the entire range of their assessment scales. NET and PET often tended to classify thermal perception in the negative categories of their scales, with 63% of NET and 56% of PET estimations falling within the range of cool/slightly cool to very cold. UTCI estimations in the negative categories accounted for 25.8% (p < 0.001), while most estimations were classified in the neutral category (53.1%). The common occasions of extreme warm conditions in terms of both air temperature (Tair) and NET was 77.7%, Tair and UTCI 64.4%, and Tair and PET 33.6% (p < 0.001). According to the indices considered and the method followed, NET and UTCI satisfied sufficiently the requirements for operational use in the climate conditions of the Mediterranean climate.


Assuntos
Sensação Térmica , Tempo (Meteorologia) , Grécia , Clima , Temperatura
15.
Sci Total Environ ; 912: 168756, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38008318

RESUMO

Dynamic temperature control strategies are feasible for enhancing energy flexibility and reducing energy consumption in buildings. However, guidelines for designing such dynamic thermal environments are lacking. In this study, 30 participants were recruited to undergo four experimental cycles formed by combining two temperature ranges (25-28 °C and 26-29 °C) and two temperature change rates (3 °C/h and 6 °C/h). Variations in the subjective perception and physiological responses with time were recorded throughout the experiments. The participants reported cooler thermal sensation and better thermal comfort for the same temperature during the ramp-down phase than during the ramp-up phase, which was more pronounced at faster temperature changes. The limits on temperature variations in the current standards underestimate the thermal acceptability of people. Although the temperature cycles exceeded the limits in the standards, sustained thermal comfort and high thermal acceptability were achieved when the temperature changed within 25-28 °C. At a rapid 6 °C/h change rate, the thermal sensation briefly deviated from the comfort zone when Top changed within 26-29 °C, suggesting that the limits should be set relative to the temperature change span. The comfortable temperature ranges for change rates of 3 °C/h and 6 °C/h in summer conditions were 22.8-28.7 °C and 22.8-28.4 °C, respectively, which are broader than the recommended indoor temperature range for summer in the Chinese standard. These findings indicate the potential of temperature variations to extend the thermal comfort zones while consuming less energy without requiring additional cooling devices.


Assuntos
Temperatura Baixa , Sensação Térmica , Humanos , Temperatura , Estações do Ano , Ambiente Construído
16.
Int J Sports Physiol Perform ; 19(1): 28-33, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37857384

RESUMO

PURPOSE: To assess the core temperature fluctuations during 10-km open-water swimming (OWS) in cool water and the relationship between thermal sensation (TS) after 10-km OWS, core temperature, and local skin thermal sensitivity. METHODS: Nine highly trained OWS swimmers (4 female; age 22 [3] y) completed a single 10-km trial in cool water (22.3 °C) wearing swimsuits for OWS. During the trial, core temperature was continuously recorded via ingestible temperature sensors, and TS after trial was also measured. Then, local skin warm/cool sensitivity was measured in the forearm. RESULTS: All swimmers completed the 10-km OWS. Mean swimming speed for males and females were 1.39 (1.37-1.42 m/s) and 1.33 m/s (1.29-1.38 m/s), respectively. Core temperature increased in 8 out of 9 swimmers during 10-km OWS (P = .047), with an average increase of 0.8 °C. TS after 10-km OWS varied among swimmers. There were no correlations between post-OWS TS and post-OWS core temperature (P = .9333), whereas there was a negative correlation between post-OWS TS and local skin cool sensitivity (P = .0056). CONCLUSION: These results suggest that core temperature in elite swimmers might not decrease during 10-km OWS in the cool water temperature of official OWS. In addition, individual differences in TS after 10-km OWS may be related to skin cool sensitivity rather than core temperature.


Assuntos
Natação , Água , Masculino , Humanos , Feminino , Adulto Jovem , Adulto , Temperatura , Temperatura Baixa , Sensação Térmica , Temperatura Cutânea
17.
Pain ; 165(3): 565-572, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862047

RESUMO

ABSTRACT: This study aimed to characterize the sensory responses observed when electrically stimulating the white matter surrounding the posterior insula and medial operculum (PIMO). We reviewed patients operated on under awake conditions for a glioma located in the temporoparietal junction. Patients' perceptions were retrieved from operative reports. Stimulation points were registered in the Montreal Neurological Institute template. A total of 12 stimulation points in 8 patients were analyzed. Painful sensations in the contralateral leg were reported (5 sites in 5 patients) when stimulating the white matter close to the parcel OP2/3 of the Glasser atlas. Pain had diverse qualities: burning, tingling, crushing, or electric shock. More laterally, in the white matter of OP1, pain and heat sensations in the upper part of the body were described (5 sites in 2 patients). Intermingled with these sites, vibration sensations were also reported (3 sites in 2 patients). Based on the tractograms of 44 subjects from the Human Connectome Project data set, we built a template of the pathways linking the thalamus to OP2/3 and OP1. Pain sites were located in the thalamo-OP2/3 and thalamo-OP1 tracts. Heat sites were located in the thalamo-OP1 tract. In the 227 awake surgeries performed for a tumor located outside of the PIMO region, no patients ever reported pain or heat sensations when stimulating the white matter. Thus, we propose that the thalamo-PIMO connections constitute the main cortical inputs for nociception and thermoception and emphasize that preserving these fibers is of utmost importance to prevent the postoperative onset of a debilitating insulo-opercular pain syndrome.


Assuntos
Terapia por Estimulação Elétrica , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Temperatura Alta , Vibração , Dor/etiologia , Percepção da Dor/fisiologia , Sensação Térmica , Mapeamento Encefálico
18.
Pain ; 165(1): 216-224, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37578447

RESUMO

ABSTRACT: Paradoxical heat sensation (PHS) is the perception of warmth when the skin is cooled. Paradoxical heat sensation rarely occurs in healthy individuals but more frequently in patients suffering from lesions or disease of the peripheral or central nervous system. To further understand mechanisms and epidemiology of PHS, we evaluated the occurrence of PHS in relation to disease aetiology, pain levels, quantitative sensory testing parameters, and Neuropathic Pain Symptom Inventory (NPSI) items in patients with nervous system lesions. Data of 1090 patients, including NPSI scores from 404 patients, were included in the analysis. We tested 11 quantitative sensory testing parameters for thermal and mechanical detection and pain thresholds, and 10 NPSI items in a multivariate generalised linear model with PHS, aetiology, and pain (yes or no) as fixed effects. In total, 30% of the neuropathic patients reported PHS in contrast to 2% of healthy individuals. The frequency of PHS was not linked to the presence or intensity of pain. Paradoxical heat sensation was more frequent in patients living with polyneuropathy compared with central or unilateral peripheral nerve lesions. Patients who reported PHS demonstrated significantly lower sensitivity to thermal perception, with lower sensitivity to normally painful heat and cold stimuli. Neuropathic Pain Symptom Inventory scores were lower for burning and electric shock-like pain quality for patients with PHS. Our findings suggest that PHS is associated with loss of small thermosensory fibre function normally involved in cold and warm perception. Clinically, presence of PHS could help screening for loss of small fibre function as it is straightforward to measure or self-reported by patients.


Assuntos
Hipestesia , Neuralgia , Humanos , Hipestesia/etiologia , Temperatura Alta , Limiar da Dor/fisiologia , Sensação Térmica , Sensação
19.
J Therm Biol ; 119: 103758, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070272

RESUMO

L-menthol is a cyclic monoterpene derived from aromatic plants, which gives a cooling sensation upon application. With this in mind, L-menthol is beginning to be considered as a potential ergogenic aid for exercise and sporting competitions, particularly in hot environments, however female-specific research is lacking. The aim of this narrative review is to summarize available literature relating to topical application of L-menthol and provide commentary on avenues of consideration relating to future research developments of topical L-menthol in female athletes. From available studies in male participants, L-menthol topical application results in no endurance exercise performance improvements, however decreases in thermal sensation are observed. Mixed results are observed within strength performance parameters. Several genetic variations and single nucleotide polymorphisms have been identified in relation to sweat production, fluid loss and body mass changes - factors which may influence topical application of L-menthol. More specifically to female athletes, genetic variations relating to sweat responses and skin thickness, phases of the menstrual cycle, and body composition indices may affect the ergogenic effects of L-menthol topical application, via alterations in thermogenic responses, along with differing tissue distribution compared to their male counterparts. This narrative review concludes that further development of female athlete research and protocols for topical application of L-menthol is warranted due to physiological and genetic variations. Such developments would benefit research and practitioners alike with further personalized sport science strategies around phases of the menstrual cycle and body composition indices, with a view to optimize ergogenic effects of L-menthol.


Assuntos
Anestésicos , Substâncias para Melhoria do Desempenho , Feminino , Humanos , Mentol/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Sudorese , Sensação Térmica , Anestésicos/farmacologia , Extratos Vegetais/farmacologia , Atletas
20.
J Therm Biol ; 119: 103774, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38128423

RESUMO

The plateau hypoxic environment can affect the thermoregulation process of the human body, and due to the different acclimatization ability to the hypoxic environment, the thermal requirements among the people who enter Xizang at different times may be different. Accordingly, this study aims to clarify how plateau hypoxic environments influence the physiological and subjective responses of people entering Xizang at different times. And field experiments were conducted in Xi'an and Lhasa, respectively, to compare the thermal responses and oxygen responses of the subjects under different temperature conditions on the plain, the first day of entering Xizang and the 15th day of entering Xizang. The results showed that under the hypoxic environment, the thermal sensation of the subjects decreased. With the extension of the time entering Xizang, the influence of the hypoxic environment on thermal comfort was gradually weakened, but under the low temperature environment, the effect of hypoxia on thermal response was not significantly reduced. The results of this study can help to reveal how plateau hypoxic environments affect human thermal comfort and provide a theoretical basis for the design of indoor thermal environment parameters suitable for sojourners entering Xizang at different times.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Humanos , Regulação da Temperatura Corporal/fisiologia , Temperatura Baixa , Sensação Térmica , Hipóxia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...